Radio Spectral Imaging of an M8.4 Eruptive Solar Flare: Possible Evidence of a Termination Shock

Author:

Luo YingjieORCID,Chen BinORCID,Yu SijieORCID,Bastian T. S.ORCID,Krucker SämORCID

Abstract

Abstract Solar flare termination shocks have been suggested as one of the viable mechanisms for accelerating electrons and ions to high energies. Observational evidence of such shocks, however, remains rare. Using radio dynamic spectroscopic imaging of a long-duration C1.9 flare obtained by the Karl G. Jansky Very Large Array (VLA), Chen et al. suggested that a type of coherent radio bursts, referred to as “stochastic spike bursts,” were radio signatures of nonthermal electrons interacting with myriad density fluctuations at the front of a flare termination shock. Here we report another stochastic spike burst event recorded during the extended energy release phase of a long-duration M8.4-class eruptive flare on 2012 March 10. VLA radio spectroscopic imaging of the spikes in 1.0–1.6 GHz shows that, similar to the case of Chen et al., the burst centroids form an extended, ∼10″-long structure in the corona. By combining extreme-ultraviolet imaging observations of the flare from two vantage points with hard X-ray and ultraviolet observations of the flare ribbon brightenings, we reconstruct the flare arcade in three dimensions. The results show that the spike source is located at ∼60 Mm above the flare arcade, where a diffuse supra-arcade fan and multitudes of plasma downflows are present. Although the flare arcade and ribbons seen during the impulsive phase do not allow us to clearly understand how the observed spike source location is connected to the flare geometry, the cooling flare arcade observed 2 hr later suggests that the spikes are located in the above-the-loop-top region, where a termination shock presumably forms.

Funder

National Science Foundation

National Aeronautics and Space Administration

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3