Electron-to-ion Bulk Speed Ratio as a Parameter Reflecting the Occurrence of Strong Electron-dominated Current Sheets in the Solar Wind

Author:

Khabarova OlgaORCID,Büchner JörgORCID,Jain NeerajORCID,Sagitov TimothyORCID,Malova HelmiORCID,Kislov RomanORCID

Abstract

Abstract Current sheets (CSs) are preferred sites of magnetic reconnection and energy dissipation in astrophysical plasmas. Electric currents in them may be carried by both electrons and ions. In our prior theoretical studies of the CS formation in turbulent plasmas, we utilized fully kinetic and hybrid code simulations with ions considered as particles and electrons—as a massless fluid. We found that electron-dominated CSs in which electrons become the main carriers of the electric current and contributors to energy dissipation may form inside or nearby ion-dominated CSs. These structures represent a distinguished type of CSs and should not be mixed up with so-called electron-scale CSs. Current simulations show that such CSs are characterized by the electron-to-ion bulk speed ratio (u e /u i ) increases that can be seen at ion scales according to theoretical predictions and high-resolution observations from the Magnetospheric Multiscale mission. Therefore, applying the u e /u i parameter to the solar wind data may allow locating the strongest electron-dominated CSs with an ordinary spacecraft resolution of 1−3 s. This study shows that, indeed, electron-dominated CSs observed during a period of quiet solar wind conditions at 1 au impact the surrounding plasma, which may be reflected in sharp changes of u e /u i . Electron-dominated CSs are found to be localized in the vicinity of ion-dominated CSs identified via changes in the magnetic field and plasma parameters, displaying the same clustering. We conclude that u e /u i may be used as one of the key parameters for statistical studies of CSs in the solar wind and analyzing the role of electrons in them.

Funder

Russian Science Foundation

Deutsche Forschungsgemeinschaft

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3