High-resolution Observations of Plume Footpoints in a Solar Coronal Hole

Author:

Cho Kyung-SukORCID,Kumar PankajORCID,Cho Il-HyunORCID,Madjarska Maria S.ORCID,Nakariakov Valery M.ORCID,Lim Eun-KyungORCID,Cao WendaORCID,Yurchyshyn VasylORCID,Yang XuORCID,Park Sung-HongORCID

Abstract

Abstract Plumes are bright structures in coronal holes extending from the solar surface into the corona and are considered as a possible source of the solar wind. Plumes are thought to be rooted in strong unipolar photospheric flux patches (network/plage region). The magnetic activities at the base of plumes may play a crucial role in producing outflows and propagating disturbances (PDs). However, the role of photospheric/chromospheric activities (e.g., jets/spicules) at the base of plumes and their connection to PDs is poorly understood. Using high-resolution observations of a plume taken on 2020 July 23 with the 1.6 m Goode Solar Telescope (GST), Interface Region Imaging Spectrograph (IRIS), and the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamics Observatory, we analyzed chromospheric/transition region activities at the base of the plume and their connection to outflows/PDs in the plume. The GST Visible Imaging Spectrometer images reveal repetitive spicules with blueshifted emission (pseudo-Doppler maps) at the plume’s footpoint. In addition, the photospheric magnetograms provide evidence of mixed polarities at the base of the plume. The IRIS Mg ii k Dopplergrams show strong blueshifted emission (∼50 km s−1) and a high brightness temperature (Mg ii k2 line) at the footpoint of the plume. The long-period PDs (P ≈ 20–25 minutes) along the plume (AIA 171 Å) match the periodicity of spicules in the chromospheric images, suggesting a close connection between the spicules and the PDs. We suggest that the interchange reconnection between the closed and open flux of the coronal bright point at the plume’s footpoint is the most likely candidate to produce upflows and associated PDs along the plume.

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3