LYRA. III. The Smallest Reionization Survivors

Author:

Gutcke Thales A.ORCID,Pfrommer ChristophORCID,Bryan Greg L.ORCID,Pakmor RüdigerORCID,Springel VolkerORCID,Naab ThorstenORCID

Abstract

Abstract The dividing line between galaxies that are quenched by reionization (“relics”) and galaxies that survive reionization (i.e., continue forming stars) is commonly discussed in terms of a halo mass threshold. We probe this threshold in a physically more complete and accurate way than has been possible to date, using five extremely high resolution (M target = 4 M ) cosmological zoom-in simulations of dwarf galaxies within the halo mass range (1–4) × 109 M . The employed LYRA simulation model features resolved interstellar medium physics and individual, resolved supernova explosions. Interestingly, two out of five of the simulated dwarf galaxies lie close to the threshold mass but are neither full reionization relics nor full reionization survivors. These galaxies initially quench at the time of reionization but merely remain quiescent for ∼500 Myr. At z ∼ 5 they recommence star formation in a synchronous way and remain star-forming until the present day. The parallel timing indicates consistent sound-crossing and cooling times between the halos. While the star formation histories we find are diverse, we show that they are directly related to the ability of a given halo to retain and cool gas. Whereas the latter is most strongly dependent on the mass (or virial temperature) of the host halo at the time of reionization, it also depends on its growth history, the UV background (and its decrease at late times), and the amount of metals retained within the halo.

Funder

National Aeronautics and Space Administration

EC ∣ ERC ∣ HORIZON EUROPE European Research Council

National Science Foundation

Deutsche Forschungsgemeinschaft

BADW ∣ Leibniz-Rechenzentrum

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3