Modeling X-Ray and Gamma-Ray Emission from Redback Pulsar Binaries

Author:

Sim MinjuORCID,An HongjunORCID,Wadiasingh ZorawarORCID

Abstract

Abstract We investigated the multiband emission from the pulsar binaries XSS J12270−4859, PSR J2039−5617, and PSR J2339−0533, which exhibit orbital modulation in the X-ray and gamma-ray bands. We constructed the sources’ broadband spectral energy distributions and multiband orbital light curves by supplementing our X-ray measurements with published gamma-ray results, and we modeled the data using intrabinary shock (IBS) scenarios. While the X-ray data were well explained by synchrotron emission from electrons/positrons in the IBS, the gamma-ray data were difficult to explain with the IBS components alone. Therefore, we explored other scenarios that had been suggested for gamma-ray emission from pulsar binaries: (1) inverse-Compton emission in the upstream unshocked wind zone and (2) synchrotron radiation from electrons/positrons interacting with the kilogauss magnetic field of the companion. Scenario (1) requires that the bulk motion of the wind substantially decelerates to ∼1000 km s−1 before reaching the IBS for increased residence time, in which case the formation of a strong shock is untenable, inconsistent with the X-ray phenomenology. Scenario (2) can explain the data if we assume the presence of electrons/positrons with a Lorentz factor ∼ 108 (∼0.1 PeV) that pass through the IBS and tap a substantial portion of the pulsar voltage drop. These findings raise the possibility that the orbitally modulating gamma-ray signals from pulsar binaries can provide insights into the flow structure and energy conversion within pulsar winds and particle acceleration nearing PeV energies in pulsars. These signals may also yield greater understanding of kilogauss magnetic fields potentially hosted by the low-mass stars in these systems.

Publisher

American Astronomical Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3