Probing the High-energy Gamma-Ray Emission Mechanism in the Vela Pulsar via Phase-resolved Spectral and Energy-dependent Light-curve Modeling

Author:

Barnard MonicaORCID,Venter ChristoORCID,Harding Alice K.ORCID,Kalapotharakos ConstantinosORCID,Johnson Tyrel J.

Abstract

Abstract Recent kinetic simulations sparked a debate regarding the emission mechanism responsible for pulsed GeV γ-ray emission from pulsars. Some models invoke curvature radiation, while other models assume synchrotron radiation in the current sheet. We interpret the curved spectrum of the Vela pulsar as seen by H.E.S.S. II (up to ∼100 GeV) and the Fermi Large Area Telescope to be the result of curvature radiation due to primary particles in the pulsar magnetosphere and current sheet. We present phase-resolved spectra and energy-dependent light curves using an extended slot gap and current-sheet model, invoking a step function for the accelerating electric field as motivated by kinetic simulations. We include a refined calculation of the curvature radius of particle trajectories in the lab frame, impacting the particle transport, predicted light curves, and spectra. Our model reproduces the decrease of the flux of the first peak relative to the second one, evolution of the bridge emission, near-constant phase positions of peaks, and narrowing of pulses with increasing energy. We can explain the first of these trends because we find that the curvature radii of the particle trajectories in regions where the second γ-ray light-curve peak originates are systematically larger than those associated with the first peak, implying that the spectral cutoff of the second peak is correspondingly larger. However, an unknown azimuthal dependence of the E field, as well as uncertainty in the precise spatial origin of the GeV emission, precludes a simplistic discrimination of emission mechanisms.

Funder

National Research Foundation

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3