Diagnosing FU Ori-like Sources: The Parameter Space of Viscously Heated Disks in the Optical and Near-infrared

Author:

Liu HanpuORCID,Herczeg Gregory J.ORCID,Johnstone DougORCID,Contreras-Peña CarlosORCID,Lee Jeong-EunORCID,Yang HaifengORCID,Zhou Xingyu,Yoon Sung-YongORCID,Lee Ho-Gyu,Kunitomo MasanobuORCID,Jose JessyORCID

Abstract

Abstract FU Ori-type objects (FUors) are decades-long outbursts of accretion onto young stars that are strong enough to viscously heat disks so that the disk outshines the central star. We construct models for FUor objects by calculating emission components from a steady-state viscous accretion disk, a passively-heated dusty disk, magnetospheric accretion columns, and the stellar photosphere. We explore the parameter space of the accretion rate M ̇ and stellar mass M * to investigate implications on the optical and near-infrared spectral energy distribution and spectral lines. The models are validated by fitting to multiwavelength photometry of three confirmed FUor objects, FU Ori, V883 Ori, and HBC 722, and then comparing the predicted spectra to the observed optical and infrared spectra. The brightness ratio between the viscous disk and the stellar photosphere, η, provides an important guide for identifying viscous accretion disks, with η = 1 (“transition line”) and η = 5 (“sufficient dominance line”) marking turning points in diagnostics, evaluated here in the near-infrared. These turning points indicate the emergence and complete development of FUor-characteristic strong CO absorption, weak metallic absorption, the triangular spectral continuum shape in the H band, and location in color–magnitude diagrams. Lower M * and higher M ̇ imply larger η; for M * = 0.3 M , η = 1 corresponds to M ̇ = 2 × 10 7 M yr−1 and η = 5 to M ̇ = 6 × 10 7 M yr−1. The “sufficient dominance line” also coincides with the expected accretion rate where accreting material directly reaches the star. We discuss implications of the models on extinction diagnostics, FUor brightening timescales, viscous disks during initial protostellar growth, and eruptive young stellar objects associated with FUors.

Funder

National Natural Science Foundation of China

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3