Abstract
Abstract
Particles may be accelerated in magnetized coronae via magnetic reconnections and/or plasma turbulence, leading to high-energy neutrinos and soft γ-rays. We evaluate the detectability of neutrinos from nearby bright Seyfert galaxies identified by X-ray measurements. In the disk-corona model, we find that NGC 1068 is the most promising Seyfert galaxy in the Northern sky, where IceCube is the most sensitive, and show prospects for the identification of aggregated neutrino signals from Seyfert galaxies bright in X-rays. Moreover, we demonstrate that nearby Seyfert galaxies are promising targets for the next generation of neutrino telescopes such as KM3NeT and IceCube-Gen2. For KM3NeT, Cen A can be the most promising source in the Southern sky if a significant fraction of the observed X-rays come from the corona, and it could be identified in few years of KM3NeT operation. Our results reinforce the idea that hidden cores of supermassive black holes are the dominant sources of the high-energy neutrino emission and underlines the necessity of better sensitivity to medium-energy ranges in future neutrino detectors for identifying the origin of high-energy cosmic neutrinos.
Publisher
American Astronomical Society
Subject
Space and Planetary Science,Astronomy and Astrophysics
Cited by
39 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献