Making the Solar System

Author:

Chambers JohnORCID

Abstract

Abstract We model the early stages of planet formation in the solar system, including continual planetesimal formation, and planetesimal and pebble accretion onto planetary embryos in an evolving disk driven by a disk wind. The aim is to constrain aspects of planet formation that have large uncertainties by matching key characteristics of the solar system. The model produces a good fit to these characteristics for a narrow range of parameter space. Planetary growth beyond the ice line is dominated by pebble accretion. Planetesimal accretion is more important inside the ice line. Pebble accretion inside the ice line is slowed by higher temperatures, partial removal of inflowing pebbles by planetesimal formation and pebble accretion further out in the disk, and increased radial velocities due to gas advection. The terrestrial planets are prevented from accreting much water ice because embryos beyond the ice line reach the pebble-isolation mass before the ice line enters the terrestrial-planet region. When only pebble accretion is considered, embryos typically remain near their initial mass or grow to the pebble-isolation mass. Adding planetesimal accretion allows Mars-sized objects to form inside the ice line, and allows giant-planet cores to form over a wider region beyond the ice line. In the region occupied by Mercury, pebble Stokes numbers are small. This delays the formation of embryos and stunts their growth, so that only low-mass planets can form here.

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3