Nuclear Matter and Neutron Stars from Relativistic Brueckner–Hartree–Fock Theory

Author:

Tong HuiORCID,Wang ChencanORCID,Wang SiboORCID

Abstract

Abstract The momentum and isospin dependence of the single-particle potential for the in-medium nucleon are the key quantities in the Relativistic Brueckner–Hartree–Fock (RBHF) theory. It depends on how to extract the scalar and the vector components of the single-particle potential inside nuclear matter. In contrast to the RBHF calculations in the Dirac space with the positive-energy states (PESs) only, the single-particle potential can be determined in a unique way by the RBHF theory together with the negative-energy states, i.e., the RBHF theory in the full Dirac space. The saturation properties of symmetric and asymmetric nuclear matter in the full Dirac space are systematically investigated based on the realistic Bonn nucleon–nucleon potentials. In order to further specify the importance of the calculations in the full Dirac space, the neutron star properties are investigated. The direct URCA process in neutron star cooling will happen at density ρ DURCA = 0.43, 0.48, 0.52 fm−3 with proton fractions of Y p,DURCA = 0.13. The radii of a 1.4M neutron star are predicated as R 1.4 M = 11.97 , 12.13 , 12.27 km, and their tidal deformabilities are Λ 1.4 M = 376 , 405 , 433 for potential Bonn A, B, C. Compared with the results obtained in the Dirac space with PESs only, the full-Dirac-space RBHF calculation predicts the softest symmetry energy, which would be more favored by the gravitational wave detection of GW170817. Furthermore, the results from the full-Dirac-space RBHF theory are consistent with the recent astronomical observations of massive neutron stars and simultaneous mass–radius measurement.

Funder

National Key R&D Program of China

National Natural Science Foundation of China

Fundamental Research Funds for the Central Univerities

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3