Understanding the Molecular Kinetics and Chemical Equilibrium Phase of Frozen CO during Bombardment by Cosmic Rays by Employing the PROCODA Code

Author:

Pilling S.ORCID,Carvalho G. A.ORCID,de Abreu H. A.,Galvão B. R. L.ORCID,da Silveira C. H.,Mateus M. S.

Abstract

Abstract Within the cold regions of space, ices that are enriched with carbon monoxide (CO) molecules are exposed to ionizing radiation, which triggers new reactions and desorption processes. Laboratory studies on astrochemical ices employing different projectiles have revealed the appearance of several new species. In this study, we employed the upgraded PROCODA code, which involves a calculation phase utilizing thermochemistry data, to map the chemical evolution of pure CO ice irradiated by cosmic-ray analogs. In the model, we have considered 18 different chemical species (six observed: CO, CO2, C3, O3, C2O, and C5O3; 12 unobserved: C, O, C2, O2, CO3, C3O, C4O, C5O, C2O2, C2O3, C3O2, and C4O2) coupled at 156 reaction routes. Our best-fit model provides effective reaction rates (effective rate constants, (ERCs)), branching ratios for reactions within reaction groups, several desorption parameters, and the characterization of molecular abundances at the chemical equilibrium (CE) phase. The most abundant species within the ice at the CE phase were atomic oxygen (68.2%) and atomic carbon (18.2%), followed by CO (11.8%) and CO2 (1.6%). The averaged modeled desorption yield and rate were 1.3e5 molecules ion−1 and 7.4e13 molecules s−1, respectively, while the average value of ERCs in the radiation-induced dissociation reactions was 2.4e-1 s−1 and for the bimolecular reactions it was 4.4e-24 cm3 molecule−1 s−1. We believe that the current kinetics study can be used in future astrochemical models to better understand the chemical evolution of embedded species within astrophysical ices under the presence of an ionizing radiation field.

Funder

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3