Impact of Changing Stellar and Planetary Magnetic Fields on (Exo)planetary Environments and Atmospheric Mass Loss

Author:

Gupta SakshiORCID,Basak ArnabORCID,Nandy DibyenduORCID

Abstract

Abstract The magnetic activity of a star—which modulates the stellar wind outflow—shapes the immediate environments of orbiting (exo)planets and induces atmospheric loss, thereby impacting their habitability. We perform a detailed parameter space study using three-dimensional magnetohydrodynamic simulations to understand the effect of changing stellar wind magnetic field and planetary magnetic field strengths on planetary magnetospheric topology and atmospheric losses. It is observed that the relative strengths of stellar and planetary magnetic fields play a significant role in determining the steady-state magnetospheric configuration and atmospheric erosion. When the stellar field is strengthened or the planetary field is weakened, stellar magnetic field accumulation occurs at the dayside of the planet, forcing the magnetopause to shift closer to its surface. The magnetotail opens up, leading to the formation of Alfvén wings in the nightside wake region. We demonstrate how reconnection processes and wind conditions lead to the bifurcation of the magnetotail current sheet. With increasing stellar wind magnetic field strength, the dayside reconnection point approaches the planet, thereby enhancing mass loss. We establish an analytic equation relating the atmospheric mass-loss rates to stellar and planetary magnetic field strengths, which successfully explains the modeled behavior. Our results are relevant for understanding how the interplay of stellar and planetary magnetism influence (exo)planetary environments and their habitability in star–planet systems with differing relative magnetic field strengths or in a single star–planet system over the course of their evolution with age.

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3