Influence of Crustal Magnetic Fields on Horizontal Plasma Transport and Ion Escape on Mars

Author:

Li GuokanORCID,Lu Haoyu,Li YunORCID,Cao Jinbin,Zhang Xiaoxin,Li ShibangORCID

Abstract

Abstract Owing to its unevenly distributed crustal fields, Mars acts as a unique obstacle to the solar wind. In the presence of the crustal fields, the transport of the planetary ions on the dayside ionosphere exhibits north–south asymmetry. Additionally, the heavy-ion loss in the magnetotail is affected by the crustal fields. In this paper, a three-dimensional multispecies magnetohydrodynamic model is employed to simulate Mars–solar wind interactions. Numerical results indicate that the meridional transport is dominant in most areas on the dayside ionosphere. In the presence of the crustal fields, the meridional transport on the southern hemisphere (southward transport) is reduced by more than 70% above the strong crustal sources, and the zonal velocity shows local changes inside strong and weak crustal field regions. These effects result in an increase or decrease in the number density of the heavy ions reaching the terminator, thereby influencing the thickness of the ionosphere. Decreased southward velocity leads to a reduction in the heavy-ion loss on the southern magnetotail. The radial outward flux is reduced by more than 30% for O2 + and CO2 + and by 10% for O+. This study shows that in addition to the zonal transport, the meridional transport is important for the day-to-night transport on the dayside of Mars. Collectively, the horizontal plasma transport, controlled by crustal fields, is associated with the altered ionosphere structure and reduced heavy-ion loss in the magnetotail.

Funder

MOST ∣ National Natural Science Foundation of China

B-type strategic priority program of the Chinese Academy of Sciences

National Key R&D Program of China

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3