Abstract
Abstract
Type Ia supernovae (SNe) are believed to be caused by the thermonuclear explosion of a white dwarf (WD), but the nature of the progenitor system(s) is still unclear. Recent theoretical and observational developments have led to renewed interest in double-degenerate models, in particular the “helium-ignited violent merger” or “dynamically driven double-degenerate double-detonation” (D6). In this paper we take the output of an existing D6 SN model and carry it into the supernova remnant (SNR) phase up to 4000 yr after the explosion, past the time when all the ejecta have been shocked. Assuming a uniform ambient medium, we reveal specific signatures of the explosion mechanism and spatial variations intrinsic to the ejecta. The first detonation produces an ejecta tail visible at early times, while the second detonation leaves a central density peak in the ejecta that is visible at late times. The SNR shell is off-center at all times, because of an initial velocity shift due to binary motion. The companion WD produces a large conical shadow in the ejecta, visible in projection as a dark patch surrounded by a bright ring. This is a clear and long-lasting feature that is localized, and its impact on the observed morphology is dependent on the viewing angle of the SNR. These results offer a new way to diagnose the explosion mechanism and progenitor system using observations of a Type Ia SNR.
Publisher
American Astronomical Society
Subject
Space and Planetary Science,Astronomy and Astrophysics
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献