The Electric Field outward of Saturn's Main Rings

Author:

Paranicas C.ORCID,Roussos E.ORCID,Dialynas K.ORCID,Kollmann P.ORCID,Krupp N.ORCID,Hedman M.ORCID,Allen R. C.ORCID,Hospodarsky G.ORCID

Abstract

Abstract Cassini data are consistent with a global electric field in Saturn's magnetosphere that points approximately antisunward. The inner radial extent of this field was initially established using Saturn orbit insertion data but measurements of ultrarelativistic electrons from that pass cast some doubt on whether the electric field reaches all the way to the A ring. It was not until the so-called ring-grazing and proximal orbits near the end of the mission in 2017 that relevant data were again obtained on magnetic field lines that connect to the region just outward of the main rings. Here we report on the energetic charged particle data during those orbits, showing that electron observations at a wide range of energies are consistent with an electric field that influences charged particle drift paths near the outer edge of the A ring. We include a very detailed analysis of Cassini's ultrarelativistic electron measurements (channel E7 in the text) and argue they provide no information about the electric field. This result further strengthens the case of several studies that have used the presence of the electric field to explain signatures of acceleration in the data.

Funder

NASA

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3