Quasi-stars as a Means of Rapid Black Hole Growth in the Early Universe

Author:

Coughlin Eric R.ORCID,Begelman Mitchell C.ORCID

Abstract

Abstract JWST observations demonstrate that supermassive black holes (SMBHs) exist by redshifts z ≳ 10, providing further evidence for “direct collapse” black hole (BH) formation, whereby massive (∼103–5 M ) SMBH seeds are generated within a few million years as a byproduct of the rapid inflow of gas into the centers of protogalaxies. Here we analyze the intermediate “quasi-star” phase that accompanies some direct-collapse models, during which a natal BH accretes mass from and energetically sustains (through accretion) an overlying gaseous envelope. We argue that previous estimates of the maximum BH mass that can be reached during this stage, ∼1% of the total quasi-star mass, are unphysical, and arise from underestimating the efficiency with which energy can be transported outward from regions close to the BH. We construct new quasi-star models that consist of an inner, “saturated convection” region (which conforms to a convection-dominated accretion flow near the BH) matched to an outer, adiabatic envelope. These solutions exist up to a BH mass of ∼60% of the total quasi-star mass, at which point the adiabatic envelope contains only 2% of the mass (with the remaining ∼38% in the saturated-convection region), and this upper limit is reached within a time of 20–40 Myr. We conclude that quasi-stars remain a viable route for producing SMBHs at large redshifts, which is consistent with recent JWST observations.

Funder

National Science Foundation

National Aeronautics and Space Administration

Publisher

American Astronomical Society

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3