Radiation MHD Simulations of Soft X-Ray Emitting Regions in Changing Look AGN

Author:

Igarashi TaichiORCID,Takahashi Hiroyuki R.,Kawashima TomohisaORCID,Ohsuga KenORCID,Matsumoto YosukeORCID,Matsumoto RyojiORCID

Abstract

Abstract Strong soft X-ray emission called soft X-ray excess is often observed in luminous active galactic nuclei (AGN). It has been suggested that the soft X-rays are emitted from a warm (T = 106 ∼ 107 K) region that is optically thick for the Thomson scattering (warm Comptonization region). Motivated by the recent observations that soft X-ray excess appears in changing look AGN (CLAGN) during the state transition from a dim state without broad emission lines to a bright state with broad emission lines, we performed global three-dimensional radiation magnetohydrodynamic simulations, assuming that the mass accretion rate increases and becomes around 10% of the Eddington accretion rate. The simulation successfully reproduces a warm, Thomson-thick region outside the hot radiatively inefficient accretion flow near the black hole. The warm region is formed by efficient radiative cooling due to inverse Compton scattering. The calculated luminosity 0.01−0.08 L Edd is consistent with the luminosity of CLAGN. We also found that the warm Comptonization region is well described by the steady model of magnetized disks supported by azimuthal magnetic fields. When the antiparallel azimuthal magnetic fields supporting the radiatively cooled region reconnect around the equatorial plane of the disk, the temperature of the region becomes higher by releasing the magnetic energy transported to the region.

Funder

Japan Society for the Promotion of Science London

Publisher

American Astronomical Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3