The Kullback–Leibler Divergence and the Convergence Rate of Fast Covariance Matrix Estimators in Galaxy Clustering Analysis

Author:

Li ZhigangORCID,Ding Zhejie,Yu YuORCID,Zhang Pengjie

Abstract

Abstract We present a method to quantify the convergence rate of the fast estimators of the covariance matrices in the large-scale structure analysis. Our method is based on the Kullback–Leibler (KL) divergence, which describes the relative entropy of two probability distributions. As a case study, we analyze the delete-d jackknife estimator for the covariance matrix of the galaxy correlation function. We introduce the information factor or the normalized KL divergence with the help of a set of baseline covariance matrices to diagnose the information contained in the jackknife covariance matrix. Using a set of quick particle mesh mock catalogs designed for the Baryon Oscillation Spectroscopic Survey DR11 CMASS galaxy survey, we find that the jackknife resampling method succeeds in recovering the covariance matrix with 10 times fewer simulation mocks than that of the baseline method at small scales (s ≤ 40 h −1 Mpc). However, the ability to reduce the number of mock catalogs is degraded at larger scales due to the increasing bias on the jackknife covariance matrix. Note that the analysis in this paper can be applied to any fast estimator of the covariance matrix for galaxy clustering measurements.

Publisher

American Astronomical Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3