Dense Core Collisions in Molecular Clouds: Formation of Streamers and Binary Stars

Author:

Yano Yuta,Nakamura FumitakaORCID,Kinoshita Shinichi. W.ORCID

Abstract

Abstract Dense core collisions, previously regarded as minor in star formation, are proposed to play a significant role in structure formation around protostellar envelopes and binary formation. Using archival data of nearby star-forming regions, we determine the frequencies of core collisions. Our calculations reveal that a typical core is likely to undergo multiple interactions with other cores throughout its lifetime. To further investigate the core collision process, we employ adaptive mesh refinement hydrodynamic simulations with sink particles. Our simulations demonstrate that following the formation of a protostar within a gravitationally unstable core, the merging core’s accreting gas gives rise to a rotationally supported circumstellar disk. Meanwhile, the region compressed by the shock between the cores develops into asymmetric arms that connect with the disk. Gas along these arms tends to migrate inward, ultimately falling toward the protostar. One of the arms, a remnant of the shock-compressed region, dominates over the second core gas, potentially exhibiting a distinct chemical composition. This is consistent with recent findings of large-scale streamers around protostars. Additionally, we found that collisions with velocities of ∼1.5 km s−1 result in the formation of a binary system, as evidenced by the emergence of a sink particle within the dense section of the shocked layer. Overall, dense core collisions are highlighted as a critical process in creating 103 au-scale streamers around protostellar systems and binary stars.

Funder

Japan Society for the Promotion of Science London

Publisher

American Astronomical Society

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3