LTD064402+245919: A Subgiant with a 1–3 M ⊙ Undetected Companion Identified from LAMOST-TD Data

Author:

Yang FanORCID,Zhang BoORCID,Long Richard J.ORCID,Lu You-JunORCID,Shan Su-SuORCID,Wei XingORCID,Fu Jian-NingORCID,Zhang Xian-Fei,Zhao Zhi-Chao,Bai YuORCID,Yi TuanORCID,Zheng Ling-LinORCID,Zhou Ze-MingORCID,Liu Ji-FengORCID

Abstract

Abstract Single-line spectroscopic binaries have recently contributed to stellar-mass black hole discovery, independently of the X-ray transient method. We report the identification of a single-line binary system, LTD064402+245919, with an orbital period of 14.50 days. The observed component is a subgiant with a mass of 2.77 ± 0.68 M , radius 15.5 ± 2.5 R , effective temperature T eff 4500 ± 200 K, and surface gravity log g 2.5 ± 0.25 dex. The discovery makes use of the Large Sky Area Multi-Object fiber Spectroscopic Telescope time-domain and Zwicky Transient Facility survey. Our general-purpose software pipeline applies a Lomb–Scargle periodogram to determine the orbital period and uses machine learning to classify the variable type from the folded light curves. We apply a combined model to estimate the orbital parameters from both the light and radial velocity curves, taking constraints on the primary star mass, mass function, and detection limit of secondary luminosity into consideration. We obtain a radial velocity semiamplitude of 44.6 ± 1.5 km s−1, mass ratio of 0.73 ± 0.07, and an undetected component mass of 2.02 ± 0.49 M when the type of the undetected component is not set. We conclude that the inclination is not well constrained, and that the secondary mass is larger than 1 M when the undetected component is modeled as a compact object. According to our investigations using a Monte Carlo Markov Chain simulation, increasing the spectra signal-to-noise ratio by a factor of 3 would enable the secondary light to be distinguished (if present). The algorithm and software in this work are able to serve as general-purpose tools for the identification of compact objects quiescent in X-rays.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3