The Intracluster Light and Its Link with the Dynamical State of the Host Group/Cluster: The Role of the Halo Concentration

Author:

Contini EmanueleORCID,Jeon Seyoung,Rhee JinsuORCID,Han San,Yi Sukyoung K.ORCID

Abstract

Abstract We investigate the role of halo concentration in the formation of intracluster light (ICL) in galaxy groups and clusters, as predicted by a state-of-the-art semianalytic model of galaxy formation, coupled with a set of high-resolution dark-matter-only simulations. The analysis focuses on how the fraction of ICL correlates with halo mass, concentration, and fraction of early-type galaxies (ETGs) in a large sample of groups and clusters with 13.0 log M halo 15.0 . The fraction of ICL follows a normal distribution, a consequence of the stochastic nature of the physical processes responsible for the formation of the diffuse light. The fractional budget of ICL depends on both halo mass (very weakly) until group scales, and concentration (remarkably). More interestingly, the ICL fraction is higher in more concentrated objects, a result of the stronger tidal forces acting in the innermost regions of the halos where the concentration is the quantity playing the most relevant role. Our model predictions do not show any dependence between the ICL and ETGs fractions, and so we instead suggest the concentration rather than the mass, as recently claimed, to be the main driver of the ICL formation. The diffuse light starts to form in groups via stellar stripping and mergers and later assembled in more-massive objects. However, the formation and assembly keep going on group/cluster scales at lower redshift through the same processes, mainly via stellar stripping in the vicinity of the central regions where tidal forces are stronger.

Funder

Korea Natioanal Research Foundation

Korea National Research Foundation

Korean National Research Foundation

R&D program

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3