A Unified Spectroscopic and Photometric Model to Infer Surface Inhomogeneity: Application to Luhman 16B

Author:

Plummer Michael K.ORCID,Wang JiORCID

Abstract

Abstract Extremely large telescopes (ELTs) provide an opportunity to observe surface inhomogeneities for ultracool objects including M dwarfs, brown dwarfs (BDs), and gas giant planets via Doppler imaging and spectrophotometry techniques. These inhomogeneities can be caused by star spots, clouds, and vortices. Star spots and associated stellar flares play a significant role in habitability, either stifling life or catalyzing abiogenesis depending on the emission frequency, magnitude, and orientation. Clouds and vortices may be the source of spectral and photometric variability observed at the L/T transition of BDs and are expected in gas giant exoplanets. We develop a versatile analytical framework to model and infer surface inhomogeneities that can be applied to both spectroscopic and photometric data. This model is validated against a slew of numerical simulations. Using archival spectroscopic and photometric data, we infer starspot parameters (location, size, and contrast) and generate global surface maps for Luhman 16B (an early T dwarf and one of our solar system’s nearest neighbors at a distance of ≈2 pc). We confirm previous findings that Luhman 16B’s atmosphere is inhomogeneous with time-varying features. In addition, we provide tentative evidence of longer timescale atmospheric structures such as dark equatorial and bright midlatitude to polar spots. These findings are discussed in the context of atmospheric circulation and dynamics for ultracool dwarfs. Our analytical model will be valuable in assessing the feasibility of using ELTs to study surface inhomogeneities of gas giant exoplanets and other ultracool objects.

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3