Causes and Consequences of Magnetic Complexity Changes within Interplanetary Coronal Mass Ejections: A Statistical Study

Author:

Scolini CamillaORCID,Winslow Réka M.ORCID,Lugaz NoéORCID,Salman Tarik M.ORCID,Davies Emma E.ORCID,Galvin Antoinette B.ORCID

Abstract

Abstract We present the first statistical analysis of complexity changes affecting the magnetic structure of interplanetary coronal mass ejections (ICMEs), with the aim of answering the questions: How frequently do ICMEs undergo magnetic complexity changes during propagation? What are the causes of such changes? Do the in situ properties of ICMEs differ depending on whether they exhibit complexity changes? We consider multispacecraft observations of 31 ICMEs by MESSENGER, Venus Express, ACE, and STEREO between 2008 and 2014 while radially aligned. By analyzing their magnetic properties at the inner and outer spacecraft, we identify complexity changes that manifest as fundamental alterations or significant reorientations of the ICME. Plasma and suprathermal electron data at 1 au, and simulations of the solar wind enable us to reconstruct the propagation scenario for each event, and to identify critical factors controlling their evolution. Results show that ∼65% of ICMEs change their complexity between Mercury and 1 au and that interaction with multiple large-scale solar wind structures is the driver of these changes. Furthermore, 71% of ICMEs observed at large radial (>0.4 au) but small longitudinal (<15°) separations exhibit complexity changes, indicating that propagation over large distances strongly affects ICMEs. Results also suggest that ICMEs may be magnetically coherent over angular scales of at least 15°, supporting earlier theoretical and observational estimates. This work presents statistical evidence that magnetic complexity changes are consequences of ICME interactions with large-scale solar wind structures, rather than intrinsic to ICME evolution, and that such changes are only partly identifiable from in situ measurements at 1 au.

Funder

National Aeronautics and Space Administration

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3