A Machine Learning–Based Approach to Time-series Wave Identification in the Solar Wind

Author:

Fordin SamuelORCID,Shay MichaelORCID,Wilson III Lynn B.ORCID,Maruca BennettORCID,Thompson Barbara J.ORCID

Abstract

Abstract The Wind spacecraft has yielded several decades of high-resolution magnetic field data, a large fraction of which displays small-scale structures. In particular, the solar wind is full of wavelike fluctuations that appear in both the field magnitude and its components. The nature of these fluctuations can be tied to the properties of other structures in the solar wind, such as shocks, that have implications for the time evolution of the solar wind. As such, having a large collection of wave events would facilitate further study of the effects that these fluctuations have on solar wind evolution. Given the large volume of magnetic field data available, machine learning is the most practical approach to classifying the myriad small-scale structures observed. To this end, a subset of Wind data is labeled and used as a training set for a multibranch 1D convolutional neural network aimed at classifying circularly polarized wave modes. Using this algorithm, a preliminary statistical study of 1 yr of data is performed, yielding about 300,000 wave intervals out of about 5,000,000 solar wind intervals. The wave intervals come about more often in the fast solar wind and at higher temperatures, and the number of waves per day is highly periodic. This machine learning–based approach to wave detection has the potential to be a powerful, inexpensive way to catalog waves throughout decades of spacecraft data.

Funder

National Aeronautics and Space Administration

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3