Abstract
Abstract
Fast radio bursts (FRBs) display a confounding variety of burst properties and host-galaxy associations. Repeating FRBs offer insight into the FRB population by enabling spectral, temporal, and polarimetric properties to be tracked over time. Here, we report on the polarized observations of 12 repeating sources using multiyear monitoring with the Canadian Hydrogen Intensity Mapping Experiment (CHIME) over 400–800 MHz. We observe significant rotation measure (RM) variations from many sources in our sample, including RM changes of several hundred radians per square meter over month timescales from FRBs 20181119A, 20190303A, and 20190417A, and more modest RM variability (ΔRM ≲ few tens of radians per square meter) from FRBs 20181030A, 20190208A, 20190213B, and 20190117A over equivalent timescales. Several repeaters display a frequency-dependent degree of linear polarization that is consistent with depolarization via scattering. Combining our measurements of RM variations with equivalent constraints on DM variability, we estimate the average line-of-sight magnetic field strength in the local environment of each repeater. In general, repeating FRBs display RM variations that are more prevalent and/or extreme than those seen from radio pulsars in the Milky Way and the Magellanic Clouds, suggesting repeating FRBs and pulsars occupy distinct magnetoionic environments.
Funder
Gouvernement du Canada ∣ Natural Sciences and Engineering Research Council of Canada
Publisher
American Astronomical Society
Subject
Space and Planetary Science,Astronomy and Astrophysics
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献