Abstract
Abstract
In this study, we generate He i 1083 nm images from Solar Dynamic Observatory (SDO)/Atmospheric Imaging Assembly (AIA) images using a novel deep learning method (pix2pixHD) based on conditional Generative Adversarial Networks (cGAN). He i 1083 nm images from National Solar Observatory (NSO)/Synoptic Optical Long-term Investigations of the Sun (SOLIS) are used as target data. We make three models: single-input SDO/AIA 19.3 nm image for Model I, single-input 30.4 nm image for Model II, and double-input (19.3 and 30.4 nm) images for Model III. We use data from 2010 October to 2015 July except for June and December for training and the remaining one for test. Major results of our study are as follows. First, the models successfully generate He i 1083 nm images with high correlations. Second, Model III shows better results than those with one input image in terms of metrics such as correlation coefficient (CC) and root mean square error (RMSE). CC and RMSE between real and synthetic ones for model III with 4 by 4 binnings are 0.88 and 9.49, respectively. Third, synthetic images show well observational features such as active regions, filaments, and coronal holes. This work is meaningful in that our model can produce He i 1083 nm images with higher cadence without data gaps, which would be useful for studying the time evolution of the chromosphere and transition region.
Funder
National Research Foundation of Korea
Korea Astronomy and Space Science Institute
MSIT ∣ Institute for Information and Communications Technology Promotion
Publisher
American Astronomical Society
Subject
Space and Planetary Science,Astronomy and Astrophysics
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献