VERTICO. VII. Environmental Quenching Caused by the Suppression of Molecular Gas Content and Star Formation Efficiency in Virgo Cluster Galaxies

Author:

Brown TobyORCID,Roberts Ian D.,Thorp Mallory,Ellison Sara L.ORCID,Zabel NikkiORCID,Wilson Christine D.ORCID,Bahé Yannick M.,Bisaria Dhruv,Bolatto Alberto D.ORCID,Boselli AlessandroORCID,Chung AereeORCID,Cortese LucaORCID,Catinella BarbaraORCID,Davis Timothy A.ORCID,Jiménez-Donaire María J.ORCID,Lagos Claudia D. P.,Lee BumhyunORCID,Parker Laura C.ORCID,Smith RoryORCID,Spekkens KristineORCID,Stevens Adam R. H.,Villanueva VicenteORCID,Watts Adam B.ORCID

Abstract

Abstract We study how environment regulates the star formation cycle of 33 Virgo Cluster satellite galaxies on 720 pc scales. We present the resolved star-forming main sequence for cluster galaxies, dividing the sample based on their global H i properties and comparing to a control sample of field galaxies. H i–poor cluster galaxies have reduced star formation rate (SFR) surface densities with respect to both H i–normal cluster and field galaxies (∼0.5 dex), suggesting that mechanisms regulating the global H i content are responsible for quenching local star formation. We demonstrate that the observed quenching in H i–poor galaxies is caused by environmental processes such as ram pressure stripping (RPS), simultaneously reducing the molecular gas surface density and star formation efficiency (SFE) compared to regions in H i–normal systems (by 0.38 and 0.22 dex, respectively). We observe systematically elevated SFRs that are driven by increased molecular gas surface densities at fixed stellar mass surface density in the outskirts of early stage RPS galaxies, while SFE remains unchanged with respect to the field sample. We quantify how RPS and starvation affect the star formation cycle of inner and outer galaxy disks as they are processed by the cluster. We show both are effective quenching mechanisms, with the key difference being that RPS acts upon the galaxy outskirts while starvation regulates the star formation cycle throughout disk, including within the truncation radius. For both processes, the quenching is caused by a simultaneous reduction in the molecular gas surface densities and SFE at fixed stellar mass surface density.

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3