Effects of Thermal Emission on Chandrasekhar's Semi-infinite Diffuse Reflection Problem

Author:

Sengupta SoumyaORCID

Abstract

Abstract The analytical results of Chandrasekhar's semi-infinite diffuse reflection problem is crucial in the context of the stellar or planetary atmosphere. However, the atmospheric emission effect was not taken into account in this model, and the solutions are applicable only for a diffusely scattering atmosphere in the absence of emission. We extend the model of the semi-infinite diffuse reflection problem by including the effects of thermal emission B(T), and present how this affects Chandrasekhar's analytical end results. Hence, we aim to generalize Chandrasekhar’s model to provide a complete picture of this problem. We use Invariance Principle Method to find the radiative transfer equation accurate for diffuse reflection in the presence of B(T). Then we derive the modified scattering function S(μ, ϕ; μ 0, ϕ 0) for different kinds of phase functions. We find that the scattering function S(μ, ϕ; μ 0, ϕ 0) as well as the diffusely reflected specific intensity I(0, μ; μ 0) for different phase functions are modified due to the emission B ( T ) from layer τ = 0. In both cases, B ( T ) is added to the results of the only scattering case derived by Chandrasekhar, with some multiplicative factors. Thus the diffusely reflected spectra will be enriched and carry the temperature information of the τ = 0 layer. As the effects are additive in nature, hence our model reduces to the sub-case of Chandrasekhar's scattering model in the case of B ( T ) = 0. We conclude that our generalized model provides more accurate results due to the inclusion of the thermal emission effect in Chandrasekhar's semi-infinite atmosphere problem.

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3