Discovery of an Edge-on Circumstellar Debris Disk around BD+45° 598: A Newly Identified Member of the β Pictoris Moving Group

Author:

Hinkley SashaORCID,Matthews Elisabeth C.ORCID,Lefevre CharlèneORCID,Lestrade Jean-Francois,Kennedy GrantORCID,Mawet DimitriORCID,Stapelfeldt Karl R.ORCID,Ray Shrishmoy,Mamajek EricORCID,Bowler Brendan P.ORCID,Wilner DavidORCID,Williams JonathanORCID,Ansdell Megan,Wyatt MarkORCID,Lau Alexis,Phillips Mark W.ORCID,Fernandez Jorge,Gagné Jonathan,Bubb Emma,Sutlieff Ben J.ORCID,Wilson Thomas J. G.,Matthews BrendaORCID,Ngo HenryORCID,Piskorz Danielle,Crepp Justin R.ORCID,Gonzalez Erica,Mann Andrew W.ORCID,Mace GregoryORCID

Abstract

Abstract We report the discovery of a circumstellar debris disk viewed nearly edge-on and associated with the young, K1 star BD+45° 598 using high-contrast imaging at 2.2 μm obtained at the W.M. Keck Observatory. We detect the disk in scattered light with a peak significance of ∼5σ over three epochs, and our best-fit model of the disk is an almost edge-on ∼70 au ring, with inclination angle ∼87°. Using the NOEMA interferometer at the Plateau de Bure Observatory operating at 1.3 mm, we find resolved continuum emission aligned with the ring structure seen in the 2.2 μm images. We estimate a fractional infrared luminosity of L IR/L tot × 10−4, higher than that of the debris disk around AU Mic. Several characteristics of BD+45° 598, such as its galactic space motion, placement in a color–magnitude diagram, and strong presence of lithium, are all consistent with its membership in the β Pictoris Moving Group with an age of 23 ± 3 Myr. However, the galactic position for BD+45° 598 is slightly discrepant from previously known members of the β Pictoris Moving Group, possibly indicating an extension of members of this moving group to distances of at least 70 pc. BD+45° 598 appears to be an example from a population of young circumstellar debris systems associated with newly identified members of young moving groups that can be imaged in scattered light, key objects for mapping out the early evolution of planetary systems from ∼10–100 Myr. This target will also be ideal for northern-hemisphere, high-contrast imaging platforms to search for self-luminous, planetary mass companions residing in this system.

Funder

National Science Foundation

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3