Confinedness of an X3.1-class Solar Flare Occurred in NOAA 12192: Analysis from Multi-instrument Observations

Author:

Vasantharaju N.ORCID,Zuccarello F.ORCID,Ferrente F.,Guglielmino S. L.ORCID

Abstract

Abstract The nonassociation of coronal mass ejections with high energetic flares is sparse. For this reason, the magnetic conditions required for the confinedness of major flares is a topic of active research. Using multi-instrument observations, we investigated the evolution and effects of confinedness in an X3.1 flare, which occurred in active region (AR) 12192. The decrease of net fluxes in the brightening regions near the footpoints of the multisigmoidal AR in the photosphere and chromosphere, indicative of flux cancellation favoring tether-cutting reconnection (TCR), is observed using the magnetic field observations of HMI/SDO and SOT/Hinode, respectively. The analysis of spectropolarimetric data obtained by the Interferometric Bidimensional Spectrometer over the brightening regions suggests untwisting of field lines, which further supports TCR. Filaments near the polarity inversion line region, resulting from TCR of low-lying sheared loops, undergo merging and form an elongated filament. The temperature and density differences between the footpoints of the merged filament, revealed by DEM analysis, cause streaming and counterstreaming of the plasma flow along the filament and unload at its footpoints with an average velocity of ≈40 km s−1. This results in a decrease of the mass of the filament (density decreased by >50%), leading to its rise and expansion outward. However, due to strong strapping flux, the filament separates itself instead of erupting. Further, the evolution of nonpotential parameters describes the characteristics of confinedness of the flare. Our study suggests that the sigmoid–filament system exhibits upward catastrophe due to mass unloading but gets suppressed by strong confinement of the external poloidal field.

Funder

SOLARNET project

PRE-EST project

MIUR-PRIN grant

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3