Mapping Observations of Peptide-like Molecules around Sagittarius B2

Author:

Zheng SiqiORCID,Li JuanORCID,Wang JunzhiORCID,Wang YaoORCID,Gao Feng,Quan DonghuiORCID,Du FujunORCID,Wu Yajun,Bergin EdwinORCID,Li YuqiangORCID

Abstract

Abstract Peptide-like molecules, which have a close connection with the origin of life, have been detected in the Universe. Mapping observations of HCONH2 and CH3CONH2, two of the simplest peptide-like molecules, are performed toward the Sagittarius B2 (Sgr B2) complex with the IRAM 30 m telescope. Seven transitions of HCONH2 and five transitions of CH3CONH2 are used in the analysis. The spatial distributions of the excitation temperature and column density of HCONH2 in the molecular envelope of Sgr B2 are obtained by rotation diagrams. Assuming the same excitation temperature of HCONH2, the column densities of CH3CONH2 are also calculated. The results show that the excitation temperature ranges from 6 to 46 K in the molecular envelope of Sgr B2. The abundance ratios between HCONH2 and CH3CONH2 are calculated to explore the relationship between them, as are those between HCONH2 and HNCO. The abundance ratio of CH3CONH2/HCONH2 varies from 10% to 20%, while that of HCONH2/HNCO ranges from 1.5% to 10%. CH3CONH2 is enhanced with respect to HCONH2 in the northwest region of Sgr B2. One transition of H13CONH2 is detected toward 12 positions of Sgr B2, from which a 12C/13C ratio of 28.7 is obtained. A time-dependent chemical model with a short-duration X-ray burst is used to explain the observed abundances of HCONH2 and CH3CONH2, with the best-fitting result at T dust = 53–56 K. More chemical reactions are required to be included in the model since the modeled abundance is lower than the observed one at the observed T dust.

Funder

MOST ∣ National Key Research and Development Program of China

JST ∣ Natural Science Foundation of Jiangsu Province

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3