Spectroscopic and Photometric Redshift Estimation by Neural Networks for the China Space Station Optical Survey (CSS-OS)

Author:

Zhou Xingchen,Gong YanORCID,Meng Xian-Min,Zhang Xin,Cao Ye,Chen XueleiORCID,Amaro Valeria,Fan Zuhui,Fu Liping

Abstract

Abstract The estimation of spectroscopic and photometric redshifts (spec-z and photo-z) is crucial for future cosmological surveys. It can directly affect several powerful measurements of the universe, such as weak lensing and galaxy clustering. In this work, we explore the accuracies of spec-z and photo-z that can be obtained by the China Space Station Optical Surveys, which is a next-generation space survey, using a neural network. The one-dimensional Convolutional Neural Networks and Multi-Layer Perceptron (MLP, the simplest form of an artificial neural network) are employed to derive spec-z and photo-z, respectively. The mock spectral and photometric data used for training and testing the networks are generated based on the COSMOS catalog. The networks have been trained with noisy data by creating Gaussian random realizations to reduce the statistical effects, resulting in a similar redshift accuracy for data with both high and low signal-to-noise ratios. The probability distribution functions of the predicted redshifts are also derived via Gaussian random realizations of the testing data, and then the best-fit redshifts and 1σ errors also can be obtained. We find that our networks can provide excellent redshift estimates with accuracies of ∼0.001 and 0.01 on spec-z and photo-z, respectively. Compared to existing photo-z codes, our MLP has a similar accuracy but is more efficient in the training process. The fractions of catastrophic redshifts or outliers can be dramatically suppressed compared to the ordinary template-fitting method. This indicates that the neural network method is feasible and powerful for spec-z and photo-z estimations in future cosmological surveys.

Funder

NSFC

MOST

XDA

NSFC-ISF

CAS QYZDJ

STCSM

SMEC Innovation Program

Shuguang Program

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3