Radiation Process in Relativistic MHD Waves: The Case of Circularly Polarized Alfvén Waves

Author:

Goto RyotaORCID,Asano KatsuakiORCID

Abstract

Abstract Turbulence in highly magnetized plasma can be relativistic and induce an electric field comparable to the background magnetic field. Such a strong electric field can affect the emission process of nonthermal electrons. As the first step toward elucidating the emission process in relativistic turbulence, we study the radiation process of electrons in relativistic circularly polarized Alfvén waves. While the induced electric field boosts the average energy of low-energy electrons with a Larmor radius smaller than the wavelength, the emissivity for such electrons is suppressed because of the elongated gyromotion trajectory. The trajectory of high-energy electrons is shaken by the small-scale electric field, which enhances the emissivity. Since the effective Lorentz factor of E × B drift is 2 in the circularly polarized Alfvén waves, the deviation from the standard synchrotron emission is not so prominent. However, a power-law energy injection in the waves can produce a concave photon spectrum, which is similar to the GeV extra component seen in GRB spectra. If the turbulence electric field is responsible for the GeV extra component in GRBs, the estimates of the typical electron energy and magnetic field should be largely altered.

Publisher

American Astronomical Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3