Modeling the Luminosity-dependent Pulse Profile and Emission Geometry of SMC X-2 during a Giant Outburst

Author:

Roy AnkurORCID,Cappallo RigelORCID,Laycock Silas G. T.ORCID,Christodoulou Dimitris M.ORCID,Vasilopoulos GeorgiosORCID,Bhattacharya SayantanORCID

Abstract

Abstract One of the brightest X-ray pulsars in the Small Magellanic Cloud is SMC X-2. During its most recent major outburst in 2015, this transient pulsar displayed significant changes in both its accretion state and magnetosphere, particularly when it entered the low-luminosity regime of subcritical accretion. Polestar is a pulse-profile modeling code that helps in delineating the geometry of the emission as the source evolves past outburst and toward lower-luminosity states. Applying Polestar to XMM-Newton and NuSTAR pulse profiles, we constrained the most likely inclination of the spin axis of the pulsar to be i = 87° ± 4°. As the X-ray luminosity declined, an increase in the pulsed fraction was detected from Swift observations, which suggests a transition from fan- to pencil-beam emission during the later stages of the outburst. Additionally, we also performed analysis of the OGLE IV light curves, which showed strong modulation in the optical profiles during the outburst.

Funder

NASA ADAP

NASA

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The giant outburst of EXO 2030+375;Astronomy & Astrophysics;2024-08

2. Discovery of a Rare Eclipsing Be/X-Ray Binary System, Swift J010902.6-723710 = SXP 182;The Astrophysical Journal Letters;2024-04-01

3. The 2022 super-Eddington outburst of the source SMC X-2;Monthly Notices of the Royal Astronomical Society;2024-02-15

4. On the cyclotron absorption line and evidence of the spectral transition in SMC X-2 during 2022 giant outburst;Monthly Notices of the Royal Astronomical Society;2023-03-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3