Exact Shearing Flow Magnetized Hybrid Kinetic Equilibria with Inhomogeneous Temperature

Author:

Malara F.ORCID,Settino A.ORCID,Perrone D.ORCID,Pezzi O.ORCID,Guzzi G.,Valentini F.ORCID

Abstract

Abstract Magnetized plasmas with shearing flows are found in many natural contexts, such as around Earth’s magnetopause. In collisionless plasmas where physical quantities vary on a scale of the order of or larger than ion scales, the hybrid Vlasov−Maxwell description (kinetic ions coupled to a neutralizing electron fluid via electromagnetic fields) represents a suitable approach. When crossing the magnetopause, the ion temperature, density, and direction of magnetic field vary. We derive a form for an exact stationary solution of the hybrid Vlasov−Maxwell equations that represent a magnetized plasma with a quasi-planar shearing flow, variable density and ion temperature, and variable magnetic field direction. A stationary ion distribution function is expressed as a suitable combination of particle constants of motion and evaluated numerically in such a way to obtain configurations with variable density and temperature and two quasi-planar oppositely directed velocity shear layers. Properties of particular configurations are derived from Magnetospheric Multiscale measures during crossings of Earth’s magnetopause. In the first case a quasi-uniformly directed, nearly perpendicular magnetic field is present, while in the second case, going from the magnetosheath to the magnetosphere, the magnetic field makes a wide rotation from one side to the other of the shearing flow plane. In both cases, the ion distribution function departs from a Maxwellian in the shear layers, displaying temperature anisotropy and agyrotropy, with a nonsymmetric behavior in the two shear layers. The configurations considered here can be used as models for Earth’s magnetopause in simulations of the Kelvin–Helmholtz instability.

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3