NuSTAR Hard X-Ray Monitoring of Gravitationally Lensed Quasar RX J1131–1231

Author:

DeFrancesco Cora A.ORCID,Dai XinyuORCID,Mitchell Mark,Zoghbi AbderahmenORCID,Morgan Christopher W.ORCID

Abstract

Abstract The X-ray emission from active galactic nuclei is believed to come from a combination of inverse Compton scattering of photons from the accretion disk and reprocessing of the direct X-ray emission by reflection. We present hard (10–80 keV) and soft (0.5–8 keV) X-ray monitoring of a gravitationally lensed quasar RX J1131−1231 (hereafter RXJ1131) with NuSTAR, Swift, and XMM-Newton between 2016 June 10 and 2020 November 30. Comparing the amplitude of quasar microlensing variability at the hard and soft bands allows a size comparison, where larger sources lead to smaller microlensing variability. During the period between 2018 June 6 and 2020 November 30, where both the hard and soft light curves are available, the hard and soft bands varied by factors of 3.7 and 5.5, respectively, with rms variability of 0.40 ± 0.05 and 0.57 ± 0.02. Both the variability amplitude and rms are moderately smaller for the hard X-ray emission, indicating that the hard X-ray emission is moderately larger than the soft X-ray emission region. We found the reflection fraction from seven joint hard and soft X-ray monitoring epochs is effectively consistent with a constant with low significance variability. After decomposing the total X-ray flux into direct and reprocessed components, we find a smaller variability amplitude for the reprocessed flux compared to the direct emission. The power-law cutoff energy is constrained at 96 24 + 47 keV, which positions the system in the allowable parameter space due to the pair production limit.

Funder

National Aeronautics and Space Administration

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3