Small-scale Magnetic Fields Are Critical to Shaping Solar Gamma-Ray Emission

Author:

Li 李 Jung-Tsung 融宗ORCID,Beacom John F.ORCID,Griffith SpencerORCID,Peter Annika H. G.ORCID

Abstract

Abstract The Sun is a bright gamma-ray source due to hadronic cosmic-ray interactions with solar gas. While it is known that incoming cosmic rays must generally first be reflected by solar magnetic fields to produce outgoing gamma rays, theoretical models have yet to reproduce the observed spectra. We introduce a simplified model of the solar magnetic fields that captures the main elements relevant to gamma-ray production. These are a flux tube, representing the network elements, and a flux sheet, representing the intergranular sheets. Both the tube and sheet have a horizontal size of order 100 km and serve as sites where cosmic rays are reflected and gamma rays are produced. While our simplified double-structure model does not capture all the complexities of the solar-surface magnetic fields, such as Alfvén turbulence from wave interactions or magnetic fluctuations from convection motions, it improves on previous models by reasonably producing both the hard spectrum seen by Fermi Large Area Telescope at 1–200 GeV and the considerably softer spectrum seen by the High Altitude Water Cherenkov Observatory (HAWC) at near 103 GeV. We show that lower-energy (≲10 GeV) gamma rays are primarily produced in the network elements and higher-energy (≳few × 10 GeV) gamma rays in the intergranular sheets. Notably, the spectrum softening observed by HAWC results from the limited effectiveness of capturing and reflecting ∼104 GeV cosmic rays by the finite-sized intergranular sheets. Our study is important for understanding cosmic-ray transport in the solar atmosphere and will lead to insights into small-scale magnetic fields at the photosphere.

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3