Abstract
Abstract
One prominent feature in the atmospheres of Jupiter and Saturn is the appearance of large-scale vortices (LSVs). However, the mechanism that sustains these LSVs remains unclear. One possible mechanism is that these LSVs are driven by rotating convection. Here, we present numerical simulation results on a rapidly rotating Rayleigh–Bénard convection at a small Prandtl number Pr = 0.1 (close to the turbulent Prandtl numbers of Jupiter and Saturn). We identified four flow regimes in our simulation: multiple small vortices, a coexisting large-scale cyclone and anticyclone, large-scale cyclone, and turbulence. The formation of LSVs requires that two conditions be satisfied: the vertical Reynolds number is large (
Re
z
≥
400
), and the Rossby number is small (Ro ≤ 0.4). A large-scale cyclone first appears when Ro decreases to be smaller than 0.4. When Ro further decreases to be smaller than 0.1, a coexisting large-scale cyclone and anticyclone emerges. We have studied the heat transfer in rapidly rotating convection. The result reveals that the heat transfer is more efficient in the anticyclonic region than in the cyclonic region. Besides, we find that the 2D effect increases and the 3D effect decreases in transporting convective flux as the rotation rate increases. We find that aspect ratio has an effect on the critical Rossby number in the emergence of LSVs. Our results provide helpful insights into understanding the dynamics of LSVs in gas giants.
Funder
National Natural Science Foundation of China
Publisher
American Astronomical Society
Subject
Space and Planetary Science,Astronomy and Astrophysics
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献