Modified Temperature–Redshift Relation and Ultra-high-energy Cosmic Ray Propagation

Author:

Meinert Janning,Morejón Leonel,Sandrock Alexander,Eichmann Björn,Kreidelmeyer Jonas,Kampert Karl-Heinz

Abstract

Abstract We reexamine the interactions of ultra-high-energy cosmic rays (UHECRs) with photons from the cosmic microwave background (CMB) under a changed, locally nonlinear temperature–redshift relation T(z). This changed temperature–redshift relation has recently been suggested by the postulate of subjecting thermalized and isotropic photon gases such as the CMB to an SU(2) rather than a U(1) gauge group. This modification of ΛCDM is called SU(2)CMB, and some cosmological parameters obtained by SU(2)CMB seem to be in better agreement with local measurements of the same quantities, in particular H 0 and S8. In this work, we apply the reduced CMB photon density under SU(2)CMB to the propagation of UHECRs. This leads to a higher UHECR flux just below the ankle in the cosmic ray spectrum and slightly more cosmogenic neutrinos under otherwise equal conditions for emission and propagation. Most prominently, the proton flux is significantly increased below the ankle (5 × 1018 eV) for hard injection spectra and without considering the effects of magnetic fields. The reduction in CMB photon density also favors a decreased cosmic ray source evolution than the best fit using ΛCDM. In consequence, it seems that SU(2)CMB favors sources that evolve like the star formation rate, such as starburst galaxies and gamma-ray bursts, over active galactic nuclei as origins of UHECRs. We conclude that the question about the nature of primary sources of UHECRs is directly affected by the assumed temperature–redshift relation of the CMB.

Funder

Deutsche Forschungsgemeinschaft

Vector Stiftung

Publisher

American Astronomical Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3