High-energy (>40 MeV) Proton Intensity Enhancements Associated with the Passage of Interplanetary Shocks at 1 au

Author:

Lario D.ORCID,Richardson I. G.ORCID,Aran A.ORCID,Wijsen N.ORCID

Abstract

Abstract We analyze periods with elevated >40 MeV proton intensities observed near Earth over a time span of 43 yr (1973–2016) that coincide with the passage of interplanetary (IP) shocks. Typically, elevated proton intensities result from large solar energetic particle (SEP) events. The IP shocks observed during these elevated-intensity periods may or may not be related to the origin of the SEP events. By choosing those cases when the shocks can be confidently associated with the solar eruption that generated the SEP event, we analyze the components of these SEP events that are localized in the vicinity of the shock (so-called “energetic storm particles”, ESPs), focusing on those events where the ESP component exceeds 40 MeV. We examine the interdependence of these high-energy ESPs with (i) the properties of the solar eruptions that generated the shocks and the SEP events, and (ii) the parameters of the shocks at their arrival at 1 au. The solar eruptions at the origin of the shocks producing >40 MeV proton ESP intensity enhancements are within ±50° longitude of central meridian and are associated with fast coronal mass ejections (plane-of-sky speeds ≳1000 km s−1). The ESP events with the largest >40 MeV proton intensity increases tend to occur when there are structures such as intervening IP coronal mass ejections and other unrelated shocks present in the solar wind through which the shock is propagating. Among the various local shock parameters considered, only the shock speed shows a certain degree of correlation with the observed ESP intensity increase.

Funder

NASA ∣ SMD ∣ Heliophysics Division

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3