A Self-similar Solution of Hot Accretion Flow: The Role of the Kinematic Viscosity Coefficient

Author:

Zeraatgari Fatemeh ZahraORCID,Mei LiquanORCID,Mosallanezhad AminORCID

Abstract

Abstract We investigate the dependency of the inflow-wind structure of a hot accretion flow on the kinematic viscosity coefficient. In this regard, we propose a model for the kinematic viscosity coefficient to mimic the behavior of the magnetorotational instability that would be maximal at the rotation axis. Then, we compare our model with two other prescriptions from numerical simulations of the accretion flow. We solve two-dimensional hydrodynamic equations of hot accretion flows in the presence of thermal conduction. The self-similar approach is also adopted in the radial direction. We calculate the properties of the inflow and the wind such as velocity, density, and angular momentum for three models of the kinematic viscosity prescription. On inspection, we find that in our suggested model the wind is less efficient at extracting the angular momentum outward where the self-similar solutions are applied than it is in two other models. The solutions obtained in this paper might be applicable to hydrodynamical numerical simulations of hot accretion flows.

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3