Distorted-toroidal Flux Rope Model

Author:

Nieves-Chinchilla TeresaORCID,Hidalgo Miguel AngelORCID,Cremades HebeORCID

Abstract

Abstract The 3D characterization of magnetic flux ropes observed in the heliosphere has been a challenging task for decades. This is mainly due to the limitations on inferring the 3D global topology and physical properties from the 1D time series from any spacecraft. To advance our understanding of magnetic flux ropes whose configuration departs from the typical stiff geometries, here we present an analytical solution for a 3D flux rope model with an arbitrary cross section and a toroidal global shape. This constitutes the next level of complexity following the elliptic-cylindrical (EC) geometry. The mathematical framework was established by Nieves-Chinchilla et al. with the EC flux rope model, which describes a magnetic topology with an elliptical cross section as a first approach to changes in the cross section. In the distorted-toroidal flux rope model, the cross section is described by a general function. The model is completely described by a nonorthogonal geometry and the Maxwell equations can be consistently solved to obtain the magnetic field and relevant physical quantities. As a proof of concept, this model is generalized in terms of the radial dependence of current density components. The last part of this paper is dedicated to a specific function, F ( φ ) = δ ( 1 λ cos φ ) , to illustrate possibilities of the model. This model paves the way toward the investigation of complex distortions of magnetic structures in the solar wind. Future investigations will explore these distortions in depth by analyzing specific events; studying implications for physical quantities, such as magnetic fluxes, helicity, or energy; and evaluating the force balance with the ambient solar wind that allows such distortions.

Funder

NASA

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3