Abstract
Abstract
One of the major processes that solar wind drives is the outflow and escape of ions from the planetary atmospheres. The major ion species in the upper ionospheres of both Earth and Mars is O+, and hence it is more likely to dominate the escape process. On Earth, due to a strong intrinsic magnetic field, the major ion outflow pathways are through the cusp, polar cap, and the auroral oval. In contrast, Mars has an induced magnetosphere, where the ionosphere is in direct contact with the shocked solar wind plasma. Therefore, physical processes underlying the ion energization and escape rates are expected to be different on Mars as compared to Earth. In the current work, we study the near-simultaneous ion outflow event from both Earth and Mars during the passage of a stream interaction region/high-speed stream (SIR/HSS) during 2016 May, when both the planets were approximately aligned on the same side of the Sun. The SIR/HSS propagation was recorded by spacecraft at the Sun–Earth L1 point and Mars Express at 1.5 au. During the passage of the SIR, the dayside and nightside ion outflows at Earth were observed by Van Allen Probes and Magnetospheric Multiscale Mission orbiters, respectively. At Mars, the ion energization at different altitudes was observed by the STATIC instrument on board the MAVEN orbiter. We observe evidence for the enhanced ion outflow from both Earth and Mars during the passage of the SIR, and identify the dominant drivers of the ion outflow.
Publisher
American Astronomical Society