Brought to Light. II. Revealing the Origins of Cloaked Spiral Features in Cluster Passive Dwarf Galaxies

Author:

Smith RoryORCID,Michea JosefinaORCID,Pasquali AnnaORCID,Calderón-Castillo PaulaORCID,Kraljic KatarinaORCID,Paudel SanjayaORCID,Lisker ThorstenORCID,Shin JihyeORCID,Ko JongwanORCID,Peletier Reynier F.ORCID,Grebel Eva K.ORCID

Abstract

Abstract In our companion paper (Brought to Light I: Michea et al.), we reveal spectacular spiral-galaxy-like features in deep optical imaging of nine Virgo early-type dwarf galaxies, hidden beneath a dominating smooth stellar disk. Using a new combination of approaches, we find that bar- and spiral-like features contribute 2.2%–6.4% of the total flux within 2 R eff. In this study, we conduct high-resolution simulations of cluster harassment of passive dwarf galaxies. Following close pericenter passages of the cluster core, tidal triggering generates features in our model disks that bear a striking resemblance to the observed features. However, we find the disks must be highly rotationally supported (V peak/σ 0 ∼ 3), much higher than typically observed. We propose that some early-type dwarfs may contain a few percent of their mass in a cold, thin disk that is buried in the light of a hot, diffuse disk and only revealed when they undergo tidal triggering. The red optical colors of our sample do not indicate any recent significant star formation, and our simulations show that very plunging pericenter passages (r peri < 0.25r vir) are required for tidal triggering. Thus, many cluster early-type dwarfs with less-plunging orbits may host a yet-undetected cold stellar disk component. We discuss possible origin scenarios and consider why similar-mass star-forming galaxies in the field are significantly more thin-disk dominated than in our cluster sample.

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3