Elemental Abundances of Prominence Material inside ICMEs

Author:

Lepri Susan T.ORCID,Rivera Yeimy J.ORCID

Abstract

Abstract A small number of interplanetary coronal mass ejections (ICMEs) have been identified that contain measurable contributions from prominence plasma. In situ measurements from during these events are marked by the presence of unusually low-charge states of C, O, and Fe, representing ionization equilibrium formation temperatures of ∼104–105 K, consistent with prominence material observed at the Sun. We present a thorough analysis of the elemental abundances of a wide variety of heavy ions, measured by Advanced Composition Explorer/SWICS, in prominence material observed in the solar wind. We find that prominence material observed in situ tends to be more enriched in heavy ions than the surrounding ICME plasma and the fast and slow solar wind. We also find that the material is on average moderately enhanced in low first ionization potential elements compared to photospheric abundances, with values that lie between fast and slow solar wind. In rare instances, where in situ prominence material is observed to have clear, persistent, low-charge states over longer periods of time, it exhibits elemental abundances that are photospheric in nature. However, in most prominence events we see indications that the associated material contains a mixture of prominence and adjacent ICME plasma. The anomalous behavior of the elemental and ionic composition in ICMEs with and without prominence material can be used to study physical processes that occur during CME initiation and release.

Funder

National Aeronautics and Space Administration

National Science Foundation

U.S. Department of Defense

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3