Estimating Ejecta Masses of Stripped-envelope Supernovae Using Late-time Light Curves

Author:

Haynie AnnastasiaORCID,Piro Anthony L.ORCID

Abstract

Abstract Stripped-envelope supernovae (SESNe) are a subclass of core-collapse supernovae that are deficient in hydrogen (SN IIb, SN Ib) and possibly helium (SN Ic) in their spectra. Their progenitors are likely stripped of this material through a combination of stellar winds and interactions with a close binary companion, but the exact ejecta mass range covered by each subtype and how it relates to the zero-age main-sequence progenitor mass is still unclear. Using a combination of semianalytic modeling and numerical simulations, we discuss how the properties of SESN progenitors can be constrained through different phases of the bolometric light curve. We find that the light-curve rise time is strongly impacted by the strength of radioactive nickel mixing and treatment of helium recombination. These can vary between events and are often not accounted for in simpler modeling approaches, leading to large uncertainties in ejecta masses inferred from the rise. Motivated by this, we focus on the late-time slope, which is determined by gamma-ray leakage. We calibrate the relationship between ejecta mass, explosion energy, and gamma-ray escape time T 0 using a suite of numerical models. Application of the fitting function we provide to bolometric light curves of SESNe should result in ejecta masses with approximately 20% uncertainty. With large samples of SESNe coming from current and upcoming surveys, our methods can be utilized to better understand the diversity and origin of the progenitor stars.

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3