Abstract
Abstract
We conduct an all-sky search for continuous gravitational waves in the LIGO O2 data from the Hanford and Livingston detectors. We search for nearly monochromatic signals with frequency 20.0 Hz ≤ f ≤ 585.15 Hz and spin-down
Hz s−1. We deploy the search on the Einstein@Home volunteer-computing project and follow-up the waveforms associated with the most significant results with eight further search stages, reaching the best sensitivity ever achieved by an all-sky survey up to 500 Hz. Six of the inspected waveforms pass all the stages but they are all associated with hardware injections, which are fake signals simulated at the LIGO detector for validation purposes. We recover all these fake signals with consistent parameters. No other waveform survives, so we find no evidence of a continuous gravitational wave signal at the detectability level of our search. We constrain the h
0 amplitude of continuous gravitational waves at the detector as a function of the signal frequency, in half-Hz bins. The most constraining upper limit at 163.0 Hz is h
0 = 1.3 × 10−25, at the 90% confidence level. Our results exclude neutron stars rotating faster than 5 ms with equatorial ellipticities larger than 10−7 closer than 100 pc. These are deformations that neutron star crusts could easily support, according to some models.
Funder
Max-Planck-Gesellschaft
NSF ∣ AST division of astronomical sciences
Publisher
American Astronomical Society
Subject
Space and Planetary Science,Astronomy and Astrophysics
Cited by
40 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献