The SN 2023ixf Progenitor in M101. II. Properties

Author:

Van Dyk Schuyler D.ORCID,Srinivasan SundarORCID,Andrews Jennifer E.ORCID,Soraisam MonikaORCID,Szalai TamásORCID,Howell Steve B.ORCID,Isaacson HowardORCID,Matheson ThomasORCID,Petigura ErikORCID,Scicluna PeterORCID,Stephens Andrew W.ORCID,Van Zandt JudahORCID,Zheng WeiKangORCID,Chun Sang-HyunORCID,Fillippenko Alexei V.ORCID

Abstract

Abstract We follow our first paper with an analysis of the ensemble of the extensive preexplosion ground- and space-based infrared observations of the red supergiant (RSG) progenitor candidate for the nearby core-collapse supernova SN 2023ixf in Messier 101, together with optical data prior to the explosion obtained with the Hubble Space Telescope (HST). We have confirmed the association of the progenitor candidate with the supernova (SN), as well as constrained the metallicity at the SN site, based on SN observations with instruments at Gemini-North. The internal host extinction to the SN has also been confirmed from a high-resolution Keck spectrum. We fit the observed spectral energy distribution (SED) for the star, accounting for its intrinsic variability, with dust radiative-transfer modeling, which assumes a silicate-rich dust shell ahead of the underlying stellar photosphere. The star is heavily dust obscured, likely the dustiest progenitor candidate yet encountered. We found median estimates of the star’s effective temperature and luminosity of 2770 K and 9.0 × 104 L , with 68% credible intervals of 2340–3150 K and (7.5–10.9) × 104 L , respectively. The candidate may have a Galactic RSG analog, IRC −10414, with a strikingly similar SED and luminosity. Via comparison with single-star evolutionary models we have constrained the initial mass of the progenitor candidate from 12 M to as high as 14 M . We have had available to us an extraordinary view of the SN 2023ixf progenitor candidate, which should be further followed up in future years with HST and the James Webb Space Telescope.

Funder

NASA ∣ Science Mission Directorate

Publisher

American Astronomical Society

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3