The Ionization and Dynamics of the Makani Galactic Wind

Author:

Rupke David S. N.ORCID,Coil Alison L.ORCID,Perrotta SerenaORCID,Davis Julie D.,Diamond-Stanic Aleksandar M.,Geach James E.,Hickox Ryan C.ORCID,Moustakas JohnORCID,Petter Grayson C.ORCID,Rudnick Gregory H.ORCID,Sell Paul H.ORCID,Tremonti Christy A.,Whalen Kelly E.ORCID

Abstract

Abstract The Makani galaxy hosts the poster child of a galactic wind on scales of the circumgalactic medium. It consists of a two-episode wind in which the slow, outer wind originated 400 Myr ago (Episode I; R I = 20 − 50 kpc) and the fast, inner wind is 7 Myr old (Episode II; R II = 0 − 20 kpc). While this wind contains ionized, neutral, and molecular gas, the physical state and mass of the most extended phase—the warm, ionized gas—are unknown. Here we present Keck optical spectra of the Makani outflow. These allow us to detect hydrogen lines out to r = 30–40 kpc and thus constrain the mass, momentum, and energy in the wind. Many collisionally excited lines are detected throughout the wind, and their line ratios are consistent with 200–400 km s−1 shocks that power the ionized gas, with v shock = σ wind. Combining shock models, density-sensitive line ratios, and mass and velocity measurements, we estimate that the ionized mass and outflow rate in the Episode II wind could be as high as those of the molecular gas: M II H II M II H 2 = ( 1 2 ) × 10 9 M and dM / dt II H II dM / dt II H 2 = 170 250 M yr−1. The outer wind has slowed, so that dM / dt I H II 10 M yr−1, but it contains more ionized gas, M I H II = 5 × 10 9 M . The momentum and energy in the recent Episode II wind imply a momentum-driven flow (p “boost” ∼7) driven by the hot ejecta and radiation pressure from the Eddington-limited, compact starburst. Much of the energy and momentum in the older Episode I wind may reside in a hotter phase, or lie further into the circumgalactic medium.

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3