Abstract
Abstract
Recent observational and numerical studies show a variety of thermal structures in the solar chromosphere. Given that the thermal interplay across the transition region is a key to coronal heating, it is worth investigating how different thermal structures of the chromosphere yield different coronal properties. In this work, by MHD simulations of Alfvén-wave heating of coronal loops, we study how the coronal properties are affected by the chromospheric temperature. To this end, instead of solving the radiative transfer equation, we employ a simple radiative loss function so that the chromospheric temperature is easily tuned. When the chromosphere is hotter, because the chromosphere extends to a larger height, the coronal part of the magnetic loop becomes shorter, which enhances the conductive cooling. A larger loop length is therefore required to maintain the high-temperature corona against the thermal conduction. From our numerical simulations we derive a condition for the coronal formation with respect to the half loop length l
loop in a simple form:
l
loop
>
aT
min
+
l
th
, where
T
min
is the minimum temperature in the atmosphere, and parameters a and l
th have negative dependencies on the coronal field strength. Our conclusion is that the chromospheric temperature has a nonnegligible impact on coronal heating for loops with small lengths and weak coronal fields. In particular, the enhanced chromospheric heating could prevent the formation of the corona.
Funder
MEXT ∣ Japan Society for the Promotion of Science
MEXT ∣ National Institutes of Natural Sciences
MEXT ∣ RIKEN
Publisher
American Astronomical Society
Subject
Space and Planetary Science,Astronomy and Astrophysics
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献